This site uses cookies to provide logins and other features. Please accept the use of cookies by clicking Accept.
Tomato locus single flower truss
Locus details | Download GMOD XML | Note to Editors | Annotation guidelines |
[loading edit links...]
|
[loading...]
|
|
![]() ![]() |
Registry name: | None | [Associate registry name] |
![]() ![]() | [Add notes, figures or images] |
Success
The display image was set successfully.
Image | Description | Type |
---|
![]() ![]() | [Associate accession] |
![]() ![]() | [Add new Allele] |
![]() ![]() | [Associate new locus] |
Associated loci - graphical view | None |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() | unprocessed genomic sequence region underlying this gene |
>Solyc03g063100.1 SL2.50ch03:33188274..33192089
ATGCCTAGAGAACGTGATCCTCTTGTTGTTGGTCGTGTGGTAGGGGATGTATTGGACCCTTTCACAAGAACTATTGGCCT
AAGAGTTATATATAGAGATAGAGAAGTTAATAATGGATGCGAGCTTAGGCCTTCCCAAGTTATTAACCAGCCAAGGGTTG
AAGTTGGAGGAGATGACCTACGTACCTTTTTCACTTTGGTAATATTTCTTATATTTTTTGTTTGGGAATATAGTTAAGTT
GATTTTCATAAGCAAAGTAAAAAGTATTTTTGTCTTTTTGTAAAGGTTATGGTGGACCCTGATGCTCCAAGTCCGAGTGA
TCCAAATCTGAGAGAATACCTTCACTGGTCCGTATTTTTTCCTTATTCTCTCTTCTTTTCATCTCTTTCTTTTTTGACCT
TTTTACTTAATTATATTCTTTAGTAATAATATATGATGATATCCTTTTTAAAAATTGGAAATACGAAAAGGAGAAATGAA
GAGGAGATTTACATGTGAGGGAGCAGATGGTAGAAATATATAAATGTGAAGATATATATTCTTGAACTTAAAAACAAGCT
ACTAAAATAAAAATGAATAAAATATTTACTCTGTCAATATTCTGTACTATATTGGTCAATGAATATTTATATTATTCATG
ACTTTAAAAATAGTCAAACGAGACATAACGTAAAAGTCAAAATACGTTTAAGCTCATTCATATAAATGAATATTTTTAAA
ATTTGTTGCATCCATCAAAATATCTACTTTTTAAGGAATGATATTTATTTCATAATATTCATATTTGATTCGTTGATGGA
TAGATTTTATTCTTTAAAAAATTAAATAAAAAAAATAAAATTGGCCTAGTCATATCCATCTAAAATGGGTGAGATTCTGG
TACGCTGACCGTCTTATAATTCCCAATAAAAACTTTTGGAGAAAAAAGGGAACACAAAAAAATGAAGTAGTGCACCAATA
GAATCACTTCTCACCTCCTTATAGCTAGTACGGATTATTCCCTTCATGTGTGCCACAGTCATGCACAATCCATATTATAA
TTTCCAAAATAATTAGTTGTTCACGTTTGAATTGATCATAAATGATATTACCATTTATCCTTTTTACTTATTAAGTAGAT
AGATTAAAAAATTTAAGATTTTCAAAAAGTTCTACATTTTTAAAAATAATCAATTGAAGGTATAAAAAAGTTGTCCTTCC
TTAATTTCTCAAGATGGATAAGTAATTAAGAACAACTAAAAAAAAGCGAACAAATAATTAGAGATCGAATGAATATTTAT
CAATCCTCATTTCACCAAGTCATTAAATTATTTTATGACCAAAATGTTTACTCATTTTGCTTAAATATCAAGAAAATTGT
TGAATTATTTCTTATAGAAATATCACTCAACATCAGTATCTAAGTAGTACTCATTTCGTTTCTATTTATATATCATTTTT
ATTAAATATAAATGTTTTCTTGATATTTATTTATTTCACAAAATCAAAATTTGACTTATGATTACTAAATAATTAATTTA
ATTTAATTAATCAAAATAAATTAATTTATCTCTTTTGCAAAAGTTAACTTTAAGAGAACACTAATTAAGAATATAATAAT
AAATTTAGTTAATTTTTTTAAAAGATATAAAATCTAAATTAGTGACATATAAATAGAAAGAGGGGAAAGTAGTAGTTTAA
CTCTTATGGTTTGATAAGGTGTGTGCTAAATGACAACATCTTTCTTGTCTCGTAAAGTTAACATCTTTGTAGGTGGTGAG
TAAGTGAGTGAATGCCATTGAATGAAGAGATTATTTGTTTTTGTCACCTTTACCACTAAAGTTTTGTCTATTTTTATTCT
TCGAATTCCTCCAGTACAAGATTTTATTTTTGATATTCCTTTCTTTGGAATTCAGTGTTGGTATAAATAGGATCTATTTG
GCTATCCACATATATTTTTAAATAAAAATCAGTATTTAGTCATTTAAATTACATTTCATGGATTATACTCGTTAAAAAAA
ATATATTTAAGCAATTAAATATTATTTGTTGAACATAGGAAAAATGATTTGAAATATATTCAAACTTTGATCACAATTGT
GATAACAATTTCAAATTTTGGGAAGGACCTTTTACCCCTTGCACTATTTATAGTATATTTTAAATGTATATATATGTCAA
CATAAATATAATAAATATTGCATTATTATATATAGTAACTTGTTCACGTGGATACATATATACCTGTAAAATATACTATT
AAATAATATAGGAGATAGTAGGTCCTGCTCAAAGTTAGAGATTGTTATAGCAATTTCGATCAAAGATATATTTCAAACTA
TTTTTCCTAAAAGATATAACCAAATACAATTTTATCTTTAATTTCAATATTTGCAAATAAAGTGAAAAAATATTTATACC
AAGTAGGATGAATTAAAAATTAAGGGTTTTTTTCCTCTTGTTATATATATAACTAATCGTCATTTTTTTATTAATGAATC
GTCGACAGGTTGGTCACCGATATTCCAGCTACCACAGGTTCAAGTTTTGGTGAGAATCCTCTTTTTGTTAATTGTTTGTT
TGTTGTCTTCCCATGTTTACATTTTTTTAAAAAAAAACAAACTAATTTTAAAGGTAGAATTAAAAAAAAATCATTATCGT
ATTTAAAAATATATTTTTATAATAATATGGACGAATAATATGAAACTAACAGAGTAATGACAAAGGAATTTATACTGAGC
GGGCAATGTTGCGTTAAATCATGTTTGTCCTAAACTTTTAAAACCTAGGAAAGGGAATGAAATCTATTCTCAATTAACGT
GATTAAATATTCTAAACAATTGATATCCTTTAATTATGTCCCACACTACGCCAAAAGTTCTTAAGCATTACACTCTAAAA
TTTGTATGCATAACATTAAAAGATCATTACCTATTTGGCTAAAATTTTTACAATAAGTTTATTTTAAAAAGTGTTCCTTT
TTTTCCCCTCTCAAAAACACACTTGTGTTACTCTTGATTTTTCTCTCAAAAGTTTAGTTAAATACTTAAGTTTTTTTAAA
ATAATTTTTTTATGAAAAAAGAAAAAAAACATTTTTGGCTAACCAAACAGGTTTAGGAGACTTGCGCTCTGCCATAAGTA
TTTCCCCATTCACTTTTCTTCCATTTTTATTTATGATTTTTTTTAACATATTAAGAAAGCTATTTGTTTCATGCTCTTCA
ATAATTTCTTATTCTCCAAATTAACATAGATATTGTGGTAAAACACCATAATAGTTATTGTATATTTGTATACCTTTTCA
AATATATATACTCTCTAATAAGATCACAAGATAAAAAAACATTTATTGGTGAATAAATTTGACATAACTTTAATTTAATT
ATAACACAAAATTCAAAAGTTTTATTTCTCAACTTAAAAATTTGGTGTCAAGTCAGAAGTAGATGTGATAATTTTTGTTT
TTGAAATTGGAGGGAGTATCTTGTTGAAAATATTGGATATGTACATAAGAAGTAGTCATTTGAAATGCATTGAAACTTGA
TAAAAACATAAGTAGCTAGCTAGTGCATGAAAGTTTGGTTGTTTATGTACTTTTAATATGTAGGGCAAGAAATAGTGAGC
TATGAAAGTCCAAGACCATCAATGGGAATACATCGATTTGTATTTGTATTATTCAGACAATTAGGTCGGCAAACAGTGTA
TGCTCCAGGATGGCGTCAGAATTTCAACACAAGAGATTTTGCAGAACTTTATAATCTTGGTTTACCTGTTGCTGCTGTCT
ATTTTAATTGTCAAAGAGAGAGTGGCAGTGGTGGACGTAGAAGATCTGCTGATTGA
ATGCCTAGAGAACGTGATCCTCTTGTTGTTGGTCGTGTGGTAGGGGATGTATTGGACCCTTTCACAAGAACTATTGGCCT
AAGAGTTATATATAGAGATAGAGAAGTTAATAATGGATGCGAGCTTAGGCCTTCCCAAGTTATTAACCAGCCAAGGGTTG
AAGTTGGAGGAGATGACCTACGTACCTTTTTCACTTTGGTAATATTTCTTATATTTTTTGTTTGGGAATATAGTTAAGTT
GATTTTCATAAGCAAAGTAAAAAGTATTTTTGTCTTTTTGTAAAGGTTATGGTGGACCCTGATGCTCCAAGTCCGAGTGA
TCCAAATCTGAGAGAATACCTTCACTGGTCCGTATTTTTTCCTTATTCTCTCTTCTTTTCATCTCTTTCTTTTTTGACCT
TTTTACTTAATTATATTCTTTAGTAATAATATATGATGATATCCTTTTTAAAAATTGGAAATACGAAAAGGAGAAATGAA
GAGGAGATTTACATGTGAGGGAGCAGATGGTAGAAATATATAAATGTGAAGATATATATTCTTGAACTTAAAAACAAGCT
ACTAAAATAAAAATGAATAAAATATTTACTCTGTCAATATTCTGTACTATATTGGTCAATGAATATTTATATTATTCATG
ACTTTAAAAATAGTCAAACGAGACATAACGTAAAAGTCAAAATACGTTTAAGCTCATTCATATAAATGAATATTTTTAAA
ATTTGTTGCATCCATCAAAATATCTACTTTTTAAGGAATGATATTTATTTCATAATATTCATATTTGATTCGTTGATGGA
TAGATTTTATTCTTTAAAAAATTAAATAAAAAAAATAAAATTGGCCTAGTCATATCCATCTAAAATGGGTGAGATTCTGG
TACGCTGACCGTCTTATAATTCCCAATAAAAACTTTTGGAGAAAAAAGGGAACACAAAAAAATGAAGTAGTGCACCAATA
GAATCACTTCTCACCTCCTTATAGCTAGTACGGATTATTCCCTTCATGTGTGCCACAGTCATGCACAATCCATATTATAA
TTTCCAAAATAATTAGTTGTTCACGTTTGAATTGATCATAAATGATATTACCATTTATCCTTTTTACTTATTAAGTAGAT
AGATTAAAAAATTTAAGATTTTCAAAAAGTTCTACATTTTTAAAAATAATCAATTGAAGGTATAAAAAAGTTGTCCTTCC
TTAATTTCTCAAGATGGATAAGTAATTAAGAACAACTAAAAAAAAGCGAACAAATAATTAGAGATCGAATGAATATTTAT
CAATCCTCATTTCACCAAGTCATTAAATTATTTTATGACCAAAATGTTTACTCATTTTGCTTAAATATCAAGAAAATTGT
TGAATTATTTCTTATAGAAATATCACTCAACATCAGTATCTAAGTAGTACTCATTTCGTTTCTATTTATATATCATTTTT
ATTAAATATAAATGTTTTCTTGATATTTATTTATTTCACAAAATCAAAATTTGACTTATGATTACTAAATAATTAATTTA
ATTTAATTAATCAAAATAAATTAATTTATCTCTTTTGCAAAAGTTAACTTTAAGAGAACACTAATTAAGAATATAATAAT
AAATTTAGTTAATTTTTTTAAAAGATATAAAATCTAAATTAGTGACATATAAATAGAAAGAGGGGAAAGTAGTAGTTTAA
CTCTTATGGTTTGATAAGGTGTGTGCTAAATGACAACATCTTTCTTGTCTCGTAAAGTTAACATCTTTGTAGGTGGTGAG
TAAGTGAGTGAATGCCATTGAATGAAGAGATTATTTGTTTTTGTCACCTTTACCACTAAAGTTTTGTCTATTTTTATTCT
TCGAATTCCTCCAGTACAAGATTTTATTTTTGATATTCCTTTCTTTGGAATTCAGTGTTGGTATAAATAGGATCTATTTG
GCTATCCACATATATTTTTAAATAAAAATCAGTATTTAGTCATTTAAATTACATTTCATGGATTATACTCGTTAAAAAAA
ATATATTTAAGCAATTAAATATTATTTGTTGAACATAGGAAAAATGATTTGAAATATATTCAAACTTTGATCACAATTGT
GATAACAATTTCAAATTTTGGGAAGGACCTTTTACCCCTTGCACTATTTATAGTATATTTTAAATGTATATATATGTCAA
CATAAATATAATAAATATTGCATTATTATATATAGTAACTTGTTCACGTGGATACATATATACCTGTAAAATATACTATT
AAATAATATAGGAGATAGTAGGTCCTGCTCAAAGTTAGAGATTGTTATAGCAATTTCGATCAAAGATATATTTCAAACTA
TTTTTCCTAAAAGATATAACCAAATACAATTTTATCTTTAATTTCAATATTTGCAAATAAAGTGAAAAAATATTTATACC
AAGTAGGATGAATTAAAAATTAAGGGTTTTTTTCCTCTTGTTATATATATAACTAATCGTCATTTTTTTATTAATGAATC
GTCGACAGGTTGGTCACCGATATTCCAGCTACCACAGGTTCAAGTTTTGGTGAGAATCCTCTTTTTGTTAATTGTTTGTT
TGTTGTCTTCCCATGTTTACATTTTTTTAAAAAAAAACAAACTAATTTTAAAGGTAGAATTAAAAAAAAATCATTATCGT
ATTTAAAAATATATTTTTATAATAATATGGACGAATAATATGAAACTAACAGAGTAATGACAAAGGAATTTATACTGAGC
GGGCAATGTTGCGTTAAATCATGTTTGTCCTAAACTTTTAAAACCTAGGAAAGGGAATGAAATCTATTCTCAATTAACGT
GATTAAATATTCTAAACAATTGATATCCTTTAATTATGTCCCACACTACGCCAAAAGTTCTTAAGCATTACACTCTAAAA
TTTGTATGCATAACATTAAAAGATCATTACCTATTTGGCTAAAATTTTTACAATAAGTTTATTTTAAAAAGTGTTCCTTT
TTTTCCCCTCTCAAAAACACACTTGTGTTACTCTTGATTTTTCTCTCAAAAGTTTAGTTAAATACTTAAGTTTTTTTAAA
ATAATTTTTTTATGAAAAAAGAAAAAAAACATTTTTGGCTAACCAAACAGGTTTAGGAGACTTGCGCTCTGCCATAAGTA
TTTCCCCATTCACTTTTCTTCCATTTTTATTTATGATTTTTTTTAACATATTAAGAAAGCTATTTGTTTCATGCTCTTCA
ATAATTTCTTATTCTCCAAATTAACATAGATATTGTGGTAAAACACCATAATAGTTATTGTATATTTGTATACCTTTTCA
AATATATATACTCTCTAATAAGATCACAAGATAAAAAAACATTTATTGGTGAATAAATTTGACATAACTTTAATTTAATT
ATAACACAAAATTCAAAAGTTTTATTTCTCAACTTAAAAATTTGGTGTCAAGTCAGAAGTAGATGTGATAATTTTTGTTT
TTGAAATTGGAGGGAGTATCTTGTTGAAAATATTGGATATGTACATAAGAAGTAGTCATTTGAAATGCATTGAAACTTGA
TAAAAACATAAGTAGCTAGCTAGTGCATGAAAGTTTGGTTGTTTATGTACTTTTAATATGTAGGGCAAGAAATAGTGAGC
TATGAAAGTCCAAGACCATCAATGGGAATACATCGATTTGTATTTGTATTATTCAGACAATTAGGTCGGCAAACAGTGTA
TGCTCCAGGATGGCGTCAGAATTTCAACACAAGAGATTTTGCAGAACTTTATAATCTTGGTTTACCTGTTGCTGCTGTCT
ATTTTAATTGTCAAAGAGAGAGTGGCAGTGGTGGACGTAGAAGATCTGCTGATTGA
Download sequence region |
Get flanking sequences on SL2.50ch03
|
![]() ![]() |
![]() ![]() | terms associated with this mRNA |
![]() ![]() | spliced cDNA sequence, including UTRs |
>Solyc03g063100.1.1 SELF PRUNING 3D
ATGCCTAGAGAACGTGATCCTCTTGTTGTTGGTCGTGTGGTAGGGGATGTATTGGACCCTTTCACAAGAACTATTGGCCT
AAGAGTTATATATAGAGATAGAGAAGTTAATAATGGATGCGAGCTTAGGCCTTCCCAAGTTATTAACCAGCCAAGGGTTG
AAGTTGGAGGAGATGACCTACGTACCTTTTTCACTTTGGTTATGGTGGACCCTGATGCTCCAAGTCCGAGTGATCCAAAT
CTGAGAGAATACCTTCACTGGTTGGTCACCGATATTCCAGCTACCACAGGTTCAAGTTTTGGGCAAGAAATAGTGAGCTA
TGAAAGTCCAAGACCATCAATGGGAATACATCGATTTGTATTTGTATTATTCAGACAATTAGGTCGGCAAACAGTGTATG
CTCCAGGATGGCGTCAGAATTTCAACACAAGAGATTTTGCAGAACTTTATAATCTTGGTTTACCTGTTGCTGCTGTCTAT
TTTAATTGTCAAAGAGAGAGTGGCAGTGGTGGACGTAGAAGATCTGCTGATTGA
ATGCCTAGAGAACGTGATCCTCTTGTTGTTGGTCGTGTGGTAGGGGATGTATTGGACCCTTTCACAAGAACTATTGGCCT
AAGAGTTATATATAGAGATAGAGAAGTTAATAATGGATGCGAGCTTAGGCCTTCCCAAGTTATTAACCAGCCAAGGGTTG
AAGTTGGAGGAGATGACCTACGTACCTTTTTCACTTTGGTTATGGTGGACCCTGATGCTCCAAGTCCGAGTGATCCAAAT
CTGAGAGAATACCTTCACTGGTTGGTCACCGATATTCCAGCTACCACAGGTTCAAGTTTTGGGCAAGAAATAGTGAGCTA
TGAAAGTCCAAGACCATCAATGGGAATACATCGATTTGTATTTGTATTATTCAGACAATTAGGTCGGCAAACAGTGTATG
CTCCAGGATGGCGTCAGAATTTCAACACAAGAGATTTTGCAGAACTTTATAATCTTGGTTTACCTGTTGCTGCTGTCTAT
TTTAATTGTCAAAGAGAGAGTGGCAGTGGTGGACGTAGAAGATCTGCTGATTGA
![]() ![]() | translated polypeptide sequence |
>Solyc03g063100.1.1 SELF PRUNING 3D
MPRERDPLVVGRVVGDVLDPFTRTIGLRVIYRDREVNNGCELRPSQVINQPRVEVGGDDLRTFFTLVMVDPDAPSPSDPN
LREYLHWLVTDIPATTGSSFGQEIVSYESPRPSMGIHRFVFVLFRQLGRQTVYAPGWRQNFNTRDFAELYNLGLPVAAVY
FNCQRESGSGGRRRSAD*
MPRERDPLVVGRVVGDVLDPFTRTIGLRVIYRDREVNNGCELRPSQVINQPRVEVGGDDLRTFFTLVMVDPDAPSPSDPN
LREYLHWLVTDIPATTGSSFGQEIVSYESPRPSMGIHRFVFVLFRQLGRQTVYAPGWRQNFNTRDFAELYNLGLPVAAVY
FNCQRESGSGGRRRSAD*
![]() ![]() |
![]() ![]() | [Associate new unigene] |
Unigene ID:
none
GenBank accessions | None | [Associate new genbank sequence] |
Other genome matches | None |
![]() ![]() | [Associate publication] [Matching publications] |
SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato.
Planta (2004)
Show / hide abstract
Show / hide abstract
The characterisation of the single flower truss ( sft) mutant phenotype of tomato ( Lycopersicon esculentum Mill.), as well as its genetic interactions with other mutations affecting FALSIFLORA ( FA) and SELF PRUNING ( SP) genes, has revealed that SFT is a key gene in the control of floral transition and floral meristem identity. The single sft mutation produces a late-flowering phenotype in both long-day and short-day conditions. In combination with fa, a mutation affecting the tomato gene orthologous to LFY, sft completely blocks the transition to flowering in this species. Thus, the phenotype of the sft fa double mutants indicates that SFT and FA participate in two parallel pathways that regulate the switch from vegetative to reproductive phase in tomato, and that both genes are indispensable for flowering. On the other hand, the replacement of flowers by vegetative shoots observed in the sft inflorescence suggests that SFT regulates flower meristem identity during inflorescence development of tomato. In addition to these two main functions, SFT is involved in the development of both flowers and sympodial shoots of tomato. First, the mutation produces a partial conversion of sepals into leaves in the first floral whorl, and a reduction in the number of floral organs, particularly carpels. Secondly, the sympodial development in the mutant plants is altered, which can be related to the interaction between SFT and SP, a gene controlling the number of nodes in sympodial shoots. In fact, we have found that the sft phenotype is epistatic to that of sp, and that the level of SP mRNA in the apical buds of sft around flowering is reduced. SFT can therefore co-ordinate the regulation of two simultaneous developmental processes in the tomato apical shoot, the promotion of flowering in one sympodial segment and the vegetative development of the next segment.
Molinero-Rosales, N. Latorre, A. Jamilena, M. Lozano, R.
Planta.
2004.
218(3).
427-34.
The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli.
Proceedings of the National Academy of Sciences of the United States of America (2006)
Show / hide abstract
Show / hide abstract
The systemic model for floral induction, dubbed florigen, was conceived in photoperiod-sensitive plants but implies, in its ultimate form, a graft-transmissible signal that, although activated by different stimuli in different flowering systems, is common to all plants. We show that SFT (SINGLE-FLOWER TRUSS), the tomato ortholog of FLOWERING LOCUS T (FT), induces flowering in day-neutral tomato and tobacco plants and is encoded by SFT. sft tomato mutant plants are late-flowering, with altered architecture and flower morphology. SFT-dependent graft-transmissible signals complement all developmental defects in sft plants and substitute for long-day stimuli in Arabidopsis, short-day stimuli in Maryland Mammoth tobacco, and light-dose requirements in tomato uniflora mutant plants. The absence of donor SFT RNA from flowering receptor shoots and the localization of the protein in leaf nuclei implicate florigen-like messages in tomato as a downstream pathway triggered by cell-autonomous SFT RNA transcripts. Flowering in tomato is synonymous with termination of the shoot apical meristems, and systemic SFT messages attenuate the growth of apical meristems before and independent of floral production. Floral enhancement by systemic SFT signals is therefore one pleiotropic effect of FT orthologs.
Lifschitz, E. Eviatar, T. Rozman, A. Shalit, A. Goldshmidt, A. Amsellem, Z. Alvarez, JP. Eshed, Y.
Proceedings of the National Academy of Sciences of the United States of America.
2006.
103(16).
6398-403.
Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato.
Journal of experimental botany (2006)
Show / hide abstract
Show / hide abstract
The transition from vegetative to floral meristems in higher plants is programmed by the coincidence of internal and environmental signals. Classic grafting experiments have shown that leaves, in response to changing photoperiods, emit systemic signals, dubbed 'florigen', which induce flowering at the shoot apex. The florigen paradigm was conceived in photoperiod-sensitive plants: nevertheless it implies that although activated by different stimuli in different flowering systems, the signal is common to all plants. Tomato is a day-neutral, perennial plant, with sympodial and modular organization of its shoots and thus with reiterative regular vegetative/reproductive transitions. SINGLE FLOWER TRUSS a regulator of flowering-time and shoot architecture encodes the tomato orthologue of FT, a major flowering integrator gene in Arabidopsis. SFT generates graft-transmissible signals which complement the morphogenetic defects in sft plants, substitute for light dose stimulus in tomato and for contrasting day-length requirements in Arabidopsis and MARYLAND MAMMOTH tobacco. It is discussed how systemic signals initiated by SFT interact with the SELF PRUNING gene to regulate vegetative to reproductive (V/R) transitions in the context of two flowering systems, one for primary apices and the other for sympodial shoots.
Lifschitz, E. Eshed, Y.
Journal of experimental botany.
2006.
57(13).
3405-14.
The flowering hormone florigen functions as a general systemic regulator of growth and termination.
Proceedings of the National Academy of Sciences of the United States of America (2009)
Show / hide abstract
Show / hide abstract
The florigen paradigm implies a universal flowering-inducing hormone that is common to all flowering plants. Recent work identified FT orthologues as originators of florigen and their polypeptides as the likely systemic agent. However, the developmental processes targeted by florigen remained unknown. Here we identify local balances between SINGLE FLOWER TRUSS (SFT), the tomato precursor of florigen, and SELF-PRUNING (SP), a potent SFT-dependent SFT inhibitor as prime targets of mobile florigen. The graft-transmissible impacts of florigen on organ-specific traits in perennial tomato show that in addition to import by shoot apical meristems, florigen is imported by organs in which SFT is already expressed. By modulating local SFT/SP balances, florigen confers differential flowering responses of primary and secondary apical meristems, regulates the reiterative growth and termination cycles typical of perennial plants, accelerates leaf maturation, and influences the complexity of compound leaves, the growth of stems and the formation of abscission zones. Florigen is thus established as a plant protein functioning as a general growth hormone. Developmental interactions and a phylogenetic analysis suggest that the SFT/SP regulatory hierarchy is a recent evolutionary innovation unique to flowering plants.
Shalit, A. Rozman, A. Goldshmidt, A. Alvarez, JP. Bowman, JL. Eshed, Y. Lifschitz, E.
Proceedings of the National Academy of Sciences of the United States of America.
2009.
106(20).
8392-7.
The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato.
Nature genetics (2010)
Show / hide abstract
Show / hide abstract
Intercrossing different varieties of plants frequently produces hybrid offspring with superior vigor and increased yields, in a poorly understood phenomenon known as heterosis. One classical unproven model for heterosis is overdominance, which posits in its simplest form that improved vigor can result from a single heterozygous gene. Here we report that heterozygosity for tomato loss-of-function alleles of SINGLE FLOWER TRUSS (SFT), which is the genetic originator of the flowering hormone florigen, increases yield by up to 60%. Yield overdominance from SFT heterozygosity is robust, occurring in distinct genetic backgrounds and environments. We show that several traits integrate pleiotropically to drive heterosis in a multiplicative manner, and these effects derive from a suppression of growth termination mediated by SELF PRUNING (SP), an antagonist of SFT. Our findings provide the first example of a single overdominant gene for yield and suggest that single heterozygous mutations may improve productivity in other agricultural organisms.
Krieger, U. Lippman, ZB. Zamir, D.
Nature genetics.
2010.
().
.
Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum).
Journal of plant physiology (2015)
Show / hide abstract
Show / hide abstract
Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution.
Vicente, MH. Zsögön, A. de Sá, AFL. Ribeiro, RV. Peres, LEP.
Journal of plant physiology.
2015.
177().
11-19.
Control of water-use efficiency by florigen.
Plant, cell & environment (2020)
Show / hide abstract
Show / hide abstract
A major issue in modern agriculture is water loss through stomata during photosynthetic carbon assimilation. In water-limited ecosystems, annual plants have strategies to synchronize their growth and reproduction to the availability of water. Some species or ecotypes of flowers are early to ensure that their life cycles are completed before the onset of late season terminal drought ("drought escape"). This accelerated flowering correlates with low water-use efficiency (WUE). The molecular players and physiological mechanisms involved in this coordination are not fully understood. We analyzed WUE using gravimetry, gas exchange, and carbon isotope discrimination in florigen deficient (sft mutant), wild-type (Micro-Tom), and florigen over-expressing (SFT-ox) tomato lines. Increased florigen expression led to accelerated flowering time and reduced WUE. The low WUE of SFT-ox was driven by higher stomatal conductance and thinner leaf blades. This florigen-driven effect on WUE appears be independent of abscisic acid (ABA). Our results open a new avenue to increase WUE in crops in an ABA-independent manner. Manipulation of florigen levels could allow us to produce crops with a life cycle synchronized to water availability.
Robledo, JM. Medeiros, D. Vicente, MH. Azevedo, AA. Thompson, AJ. Peres, LEP. Ribeiro, DM. Araújo, WL. Zsögön, A.
Plant, cell & environment.
2020.
43(1).
76-86.
SELF PRUNING 3C is a flowering repressor that modulates seed germination, root architecture, and drought responses.
Journal of experimental botany (2022)
Show / hide abstract
Show / hide abstract
Allelic variation in the CETS (CENTRORADIALIS, TERMINAL FLOWER 1, SELF PRUNING) gene family controls agronomically important traits in many crops. CETS genes encode phosphatidylethanolamine-binding proteins that have a central role in the timing of flowering as florigenic and anti-florigenic signals. The great expansion of CETS genes in many species suggests that the functions of this family go beyond flowering induction and repression. Here, we characterized the tomato SELF PRUNING 3C (SP3C) gene, and show that besides acting as a flowering repressor it also regulates seed germination and modulates root architecture. We show that loss of SP3C function in CRISPR/Cas9-generated mutant lines increases root length and reduces root side branching relative to the wild type. Higher SP3C expression in transgenic lines promotes the opposite effects in roots, represses seed germination, and also improves tolerance to water stress in seedlings. These discoveries provide new insights into the role of SP paralogs in agronomically relevant traits, and support future exploration of the involvement of CETS genes in abiotic stress responses.
Moreira, JDR. Quiñones, A. Lira, BS. Robledo, JM. Curtin, SJ. Vicente, MH. Ribeiro, DM. Ryngajllo, M. Jiménez-Gómez, JM. Peres, LEP. Rossi, M. Zsögön, A.
Journal of experimental botany.
2022.
73(18).
6226-6240.
![]() ![]() | [Add ontology annotations] |
![]() ![]() |
- Genomic details
Please wait, checking for comments about locus 1343
Your Lists
Public Lists
List Contents
List Validation Report: Failed
Elements not found:
Optional: Add Missing Accessions to A List
Mismatched case
Click the Adjust Case button to align the case in the list with what is in the database.
Multiple mismatched case
Items listed here have mulitple case mismatches and must be fixed manually. If accessions need to be merged, contact the database directly.
List elements matching a synonym
Multiple synonym matches
Fuzzy Search Results
Synonym Search Results
Available Seedlots
Your Datasets
Public Datasets
Dataset Contents
Dataset Validation Failed
Elements not found:
Your Calendar
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Having trouble viewing events on the calendar?
Are you associated with the breeding program you are interested in viewing?
Add New Event
Event Info
Attribute | Value |
---|---|
Project Name: | |
Start Date: | |
End Date: | |
Event Type: | |
Event Description: | |
Event Web URL: |
Edit Event
Login
Forgot Username
If you've forgotten your username, enter your email address below. An email will be sent with any account username(s) associated with your email address.
Reset Password
To reset your password, please enter your email address. A link will be sent to that address with a link that will enable you to reset your password.
Create New User
Working
