This site uses cookies to provide logins and other features. Please accept the use of cookies by clicking Accept.
Tomato locus Solyc11g071810
Locus details | Download GMOD XML | Note to Editors | Annotation guidelines |
New Edit Delete
|
Locus | Solyc11g071810 |
Locus name | Solyc11g071810 |
Symbol | Solyc11g071810 |
Gene activity | transcription factor |
Description | YABBY-like transcription factor |
Chromosome | 11 |
Arm | long |
|
|
![]() ![]() |
Solyc11g071810 is a TGRC gene
Solyc11g071810 is on PhyloGenes
TomDelDB genotype frequencies in tomato populations. chromosome SL2.50ch11, position: 55169274
Please cite Razifard et al.
Registry name: | None | [Associate registry name] |
![]() ![]() | [Add notes, figures or images] |
Success
The display image was set successfully.
Image | Description | Type |
---|
![]() ![]() | [Associate accession] |
Accession name:
Would you Like to specify an allele?
LA0767 | ![]() | ![]() | ![]() | ![]() | ![]() | ... (Total 20 images) | |
Pomodoro Sorrento | ![]() | ![]() | ![]() | ![]() | ![]() | ... (Total 6 images) | |
Polish Giant Paste | ![]() | ![]() | ![]() | ![]() | ![]() |
See 68 more accessions
LA0020 LA0167 LA0312 LA0507 LA0517 LA0925 LA2349 LA2364 LA2367 LA2371 LA2452 LA2595 LA2798 LA2799
![]() ![]() | [Add new Allele] |
![]() ![]() | [Associate new locus] |
|
![]() ![]() | View Solyc11g071810 relationships in the stand-alone network browser |
[loading...] | [Legend] [Levels] |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() | unprocessed genomic sequence region underlying this gene |
>Solyc11g071810.1 SL2.50ch11:55172156..55165970 (sequence from reverse strand)
ATGTCATTCGATATGACTTTTTCTTCTTCACCTTCCTCAGAACGCGTTTGTTACTTGCAATGTAATTTTTGCAACACCAT
TCTTGCGGTAAATATTTCTTCATCCTTCTTCAAACTTGTTTGAATTTTAATTACTTATTGTGCATATGATAATATAATTA
CTAGGGTTAAAAAAAAATATGCATGTTAGTCTAGGGCATAATTTGATTTTAAGCTCATGTGTGATGAGTATGATCATAGA
TTATTTATTATTAAAATTAAAAAAATATGTTTTTGATAGAAAATATATGTCTTTTGTTTTTTAGGTTTCAAGTGAAGTAA
ATATGGATGAAATTTTTGAAACATAATCTTATTTAGATGAAATATTCTTCTTTTATGAATTATAGAGTAAAAAGGATGTA
TTTGGTTGGATTTATAATCTTTCTTTGATATTTTATGTTAATTTTTACTAGATTTCACTTGGGACAAAAAAGGGTTTGTT
GGTTTTTTTTTTAAAGAGTTTCATTTGTTTGGAAAATCTTGAAAAATTAACTTCAAATGAGTTTTATAAATAAAAAAAAA
GAATTTTTATGATCTGAAGTATTTTCTTTATTCCAAAATTTCACAAATTATTGTACTACTAATTTTGGTGTAAATTAGAT
CTCTTACCTTCAAAATTGAAAAAAGAGAAAAAAAAATGGTGGGGTTTTCTGTTCACACATTTTAACACATTTGCCCACTG
GATAATAAACTCAAAATAATAATAATAATAATAATAATATTTTTTCTTCTTTTTTCCCCAATTTTTGGGATATAACTAAT
TATGTTTAAGAGAAATAATCATGATTGGAATTTGAAACAATTAAGTATTGTTTTTTATTGAAAAAAATCATTTATAGAAT
TGTAGATCATTTAAATTAAAAGGAGAAAAATAATAATTCATATATAATATATAATATTTGTTATATATATTTTTTATTTA
TTTATAGAAGTTTATTAGATCCTTGTATTGGAATTGGACTCTGATTTCTGTTCTAGTCATGTCATTTTCCTTGTTATCTC
TTTAAATTTATCACTTTTCTAGTGACTGAACAATGGTCAGAAAAAAAGTCAGGAGCACCAAAAGTAAAGGAATTAAAGAG
ATATGATTAGAGATACGATACTTTATCTTTAATCAGACGTCTCGAATAAAAAAAATTATGATAAAAACTAAGGTCATATG
CATATAAATTCTGATTAATTGAGACTCTAAAGCTCAATTAAGGACTATAAATTCCCTTACCTTAGTTGTCCTTTGTGTCA
TGAATTTTGAAGTTAAAAGAGTTAAAATTTTAAATTTTAAAAATTGTGATTTTTTAAGTTGTATTTAGACATGTATTTTA
CTTTAAAATTTTTAAAGTTTTTTGAATGAAAATTTGAAATACTTCAGTTTTCGCTCACCTCAATTAATTCTACGAAATAT
CAAGGGTTTTCACATAGAAATAGTCACTACAACAAAAACAACTTTTAACGACAGTAAATATTGACATTAATAAAGAATGC
TAAAATTTTTACCGACATTAGTTAAGTATCATTAGAACCAATATCACTAAATACTTTAACGACATATACGAAGAGTGCTA
ATTGATGCTAATGATCATTTTTGACGTAGTAATCGCTGATTACTACTAGTCAAACTAGAAAGAAGTCTATAGTTTAGTTA
TGTAAATTGTTACTACTTAATTTTTGTTATAGTGGTTACACAAATGGTAAATTATTATAGGATTGGATATATCTATAATA
TATATAAAATAATTATAAGTAATTTATATATTGACAAGCTATAATAGATAAATTTTTATAAATTTTATTCGAAAGAAATT
AGACATGATAATTTTTCATCATATCCAGTTCGAACTCTCAAGACTATAATTAGTTATTCTTTTTTTTTTTCAAAAAGTTC
CATAAAATCGAAAATTATTATATTTATATAATATTTCTCGATTTTAATCTGATGATATAAAAAATCTATATATTATCAGG
TTAGTGTTCCATGCAGCAACATGTTAACCTTAGTGACAGTAAGATGTGGGCATTGTGCAAATATGCTTTCTGTTAATATT
GGATCTTTAATTCAAGCTCTACCCCTTCAAGATGTTCAAGTAAGTAAATATATTAATTATTTTTCTCTATTTCATTTTAT
TTACGTATAAGACATATACAATCTTTTACGCACTATAATAAGTATTCATGAATCTTACGTAGGAACTTTTATTAGTGCTC
AAACACGAAATACTTAGTTTTATGAATGTTTGCTTCAGATCGAATATAATCAAATATTGATATATTCAGATAATTTGAAA
ATAATCAATTCATCGCTTAAGCGAGACATTGATCAATTGCTATCCTTTCCTTTTCGATTTGTTCCAGTAAAACAACATGT
AATTTCTACATTTTAAGGATAATTCGAGTTTAAACCTTTCAGTTTAACCCTAATATTTATAATTTTATAATTATATAATA
TTATGACATTTTTAAAATTATAATTTCTTTTAAAAAAAATTTATATACTTGTGTGTAATTCATAATCTCTATGGTCAAAT
GCTGTCTCTCTCTCTCTCTCTCTTTTTTTTTTTTACCTTTTCCTAATTTTGTGGTAAAAAAAATTAAAAAAATATTTTTT
TCCATTACTTTTTTTGTTGGTGGAGGAGAAGAAAGTGTTTTATACTAATTATTACTATGATAATAATAATATATATATTT
TTTCTTTTTATCTGACAGAAGCTGCAAAGGCAACAGTACACAAATGTTGAAAATAATTCTAGTAATTATAAAGCTTATGG
TTCATCATCATCATCCTCTTCAAAGTTCAACAGATATTCTTCCATTGTTTCTCCTCAAATTGAACCTAAAATCCCTTCGA
TTCGTCGTAAGTACTCTCTCTATCTCTCTTAATAAATCGCTACACATTAATTATATATAATCGTTCATAATAAGTAGAAC
GAGCAAATTATAACTTAATAAATAAGACAGTTGACCTACTATAACATATTTGAAATTTAAAGTTATAATATTAGTATATA
AGTTAAATATTTTGTTGAATTGTTGTTTGCAACATGTCCTTTCAAAGTGTAATTAACTTAAAACAAGCTAGGTAAGTGTA
ACCGGCTACCAGGTCAATTTAAATCAAGTTAAGATGTTTAAATATATATTTTTTAAAGTTATATCGATATATCATATATC
TTTAAGTTATATATACGTTTATCGATCGTAGCAGATAATCTGAGTTATTTATAAGACTATAATTTCGATATTATTTGGTT
GATCTAATAATATAAAACAGCATGTACATTGTTGATGTACATAAGTATAGTGACTTAGAATCTTTATCAAGGTGATTCGA
ATAATGAAAATACGATATATAAGATTTGAATTTAAAGTATCAAATAGAGCTAATTTTTACTTTTATGTTCAGATAATTTA
AACTCTTTATATATATAATATGATATTTTATTTAAAAAATAAATAAATGAACATGTGAATCCGTCTCGATTTGTAGTATG
AAAAAGGAGGAGATATAATTGACAATAATATTTGGACTACATGAAGTTTCCTCTTCACTTTTATGACAACTGAAATTGAT
TGTGACATTACATTTGTATCCAACTCATCAATAACATTGTTAATTATTAGGGCCCTTTGGTTGGAGAACAATTTATATAT
TAAAATTAAATTTACACAGTTAATACTATAATATGTTTGGTGTGATAATTTAAGCACATTATTTGGTTATTATTTTTATA
ATTTTATTTAAATTAAAAATATATAAATTGTGAATTATAAAAAATAAAATAATTAATACATGCATTATTAATATCTTCAT
AATTTAAACGACGCACTTTAAATCAATAATCCATGTGGCATAATAGAAAACACTTCTAAATAACAATGAAGCTAGGGTTA
TGAAAAAATTCAATGGTTTTTGAGCAAAATCTTGTATTTATGTAATTATGTTAGTGAATCAACATAACAGGTACATAGAT
AAGTATCGAATACGTTACCTTTTCTAAAACTCAAAATTTATAAATTTAAAATTTTAACTCCGTCTCTTTCATATATCAAA
CTATGCAGCACCAGAGAAAAGACAACGTGTTCCTTCTGCGTACAACCGATTCATCAAGTAAGTTTTTTTTTCTTCCAGTA
GATATTATGATGTTAATTTATTAATTCGCATTTAGAAATTTTAAATTTATGTATTTTTGAGATCAAATGTACTAAGTTCT
ACGTAATTCGAAAATCCGTCCATATTTAGTTACCCCTCTCTTGCCACCGAAAATTTGCAATATATTTATATTTACTGAGA
TCAAAAATATATATTTAAAATACCGATCGCATATTTTTTGCGCTATATTATTATGTTTCGAATGTGTATAGGGAAGAGAT
TCAAAGGATCAAGGCCAGTAATCCTGATATTAGCCATCGTGAAGCTTTTAGCACTGCTGCCAAAAATGTAAGTCCTCTCT
TAATCAAAAATCTCGAGATTACACTGTGAAAATAATAAAAAAAAATATTGTTTTCGTTAGTATACCTAACACAATGAAAA
TGGAAACTAATATGGATACCTAGAAGGAGTTAAGCATGGGAAAAAGCGGGAGAGTCTTTTTAAGTTGATGACTTTTTGAA
TGATCGTGTGTTTAATTTACTTTTTTATGTCTTAAATCAGATTAAATTATGAAAATAAGAAAAAAGAATCTTTAGTAAAA
AGCGTTTTTCTCGTTAGTAGACCTTACACAATGAAAATGAAAACTATGAATACCTACAAGGAGTTAAGCATGGGAAATAG
CGGGAGTGTCTTTTTAAGTTGATGACTTTTTGAACGATTTTGCGTTTAATTTACTTTTTTTTATGTCTTGAATCTTTTAG
GTAAAAATCTTACTTTGCATGTGATATAATACTAATTATATATCGTTTGAACTATAATTCTAGGCTTTCATATTTCAACT
ATATATTATTTCTATAATTTATCTAAATTATTATTTTCTTTGTATTAATATATACTTTTGGTGTTGAATTGTCCAAATGT
TTGTCGATAAACGTGCGTCTATTTTTAACCATTTATTCATCAAAATAATAATTTTAAACGTATTTTTAATCGTTAATTCA
GACAAATAATAAAACAACAAAAGAAATGAAAATAACTTGAACTATATATTATTTCTATAATTTATCTAAATTATTATTTT
CTTTGTATTAATATATACTTTTAGTGTTGAGTTGTCCAAATGTTTGTCGATAAATGTGCGTCTATTTTTGGCCATTTGTT
GATCAAAATAATAATTTTAGACGTATTTTTAATCGTTAATTCAGACAAATAATAAAACAATAAAAGAAATGAAAATAACT
TGAATTATATATTATTTCTATAATTTATCTAAATTATTATTTTCTTTGTATTAATATATACTTTTGATGTTGTAATATAT
ACTTCTGATATTGAATTGTCCAAATGTTTGTTGATAAACATGCGTCTATTTTTGGCCATTTTTATTCATCAAAATAATAA
TTTTAGACGTATTTTTAATCGTTAATTCAGACAAATAATAAAATAATAAAAGAAATGAAAATAACTTGAACTATATATTA
TTTCTATAATTTATCTAAATTAATATTTTCTTTGTATTAAAATATATTTTTGATGTTGAGTTGTCCAAATGTTTGTCGAT
AAACGTGAGTCTACTTTTGGCCATTTATTCATCGAAATAATAATTTTAAACGTATTTTTAATCGTTAATTCAAACAAATA
ATAAAACAATAAAAGAAAAGAAAATTACTTGCACTATACATTATTTCTATAATTTATCTAAATTATTATTTTCTTTGTAT
TAATATATACTTTTGATGTTGAGTTGTTTAAATATTTATCAATAGACGTGCGTTTATTTTTGGCCATTTATTCATGATTT
TAGACGTATTTTTAATCGTTAATTCAGACAAATAACAAAACAATAAAAGAAATGAAAATAACTTGTTGCATGTGGAATTT
TTTGAATGTTCACAAAAGAAAAATTATGGTAGGGACAAACAAGAATGACCACTAAAATAGAAGAAATTAAAAAAGAGAAA
AATATATTTTTCAAGATTTTATCTTTTATTTTAATTTTTTGCTATTTTTGCAGTGGGCACATTTTCCACATATTCACTTT
GGACTCAAGCTGGAGGGCAACAAATAG
ATGTCATTCGATATGACTTTTTCTTCTTCACCTTCCTCAGAACGCGTTTGTTACTTGCAATGTAATTTTTGCAACACCAT
TCTTGCGGTAAATATTTCTTCATCCTTCTTCAAACTTGTTTGAATTTTAATTACTTATTGTGCATATGATAATATAATTA
CTAGGGTTAAAAAAAAATATGCATGTTAGTCTAGGGCATAATTTGATTTTAAGCTCATGTGTGATGAGTATGATCATAGA
TTATTTATTATTAAAATTAAAAAAATATGTTTTTGATAGAAAATATATGTCTTTTGTTTTTTAGGTTTCAAGTGAAGTAA
ATATGGATGAAATTTTTGAAACATAATCTTATTTAGATGAAATATTCTTCTTTTATGAATTATAGAGTAAAAAGGATGTA
TTTGGTTGGATTTATAATCTTTCTTTGATATTTTATGTTAATTTTTACTAGATTTCACTTGGGACAAAAAAGGGTTTGTT
GGTTTTTTTTTTAAAGAGTTTCATTTGTTTGGAAAATCTTGAAAAATTAACTTCAAATGAGTTTTATAAATAAAAAAAAA
GAATTTTTATGATCTGAAGTATTTTCTTTATTCCAAAATTTCACAAATTATTGTACTACTAATTTTGGTGTAAATTAGAT
CTCTTACCTTCAAAATTGAAAAAAGAGAAAAAAAAATGGTGGGGTTTTCTGTTCACACATTTTAACACATTTGCCCACTG
GATAATAAACTCAAAATAATAATAATAATAATAATAATATTTTTTCTTCTTTTTTCCCCAATTTTTGGGATATAACTAAT
TATGTTTAAGAGAAATAATCATGATTGGAATTTGAAACAATTAAGTATTGTTTTTTATTGAAAAAAATCATTTATAGAAT
TGTAGATCATTTAAATTAAAAGGAGAAAAATAATAATTCATATATAATATATAATATTTGTTATATATATTTTTTATTTA
TTTATAGAAGTTTATTAGATCCTTGTATTGGAATTGGACTCTGATTTCTGTTCTAGTCATGTCATTTTCCTTGTTATCTC
TTTAAATTTATCACTTTTCTAGTGACTGAACAATGGTCAGAAAAAAAGTCAGGAGCACCAAAAGTAAAGGAATTAAAGAG
ATATGATTAGAGATACGATACTTTATCTTTAATCAGACGTCTCGAATAAAAAAAATTATGATAAAAACTAAGGTCATATG
CATATAAATTCTGATTAATTGAGACTCTAAAGCTCAATTAAGGACTATAAATTCCCTTACCTTAGTTGTCCTTTGTGTCA
TGAATTTTGAAGTTAAAAGAGTTAAAATTTTAAATTTTAAAAATTGTGATTTTTTAAGTTGTATTTAGACATGTATTTTA
CTTTAAAATTTTTAAAGTTTTTTGAATGAAAATTTGAAATACTTCAGTTTTCGCTCACCTCAATTAATTCTACGAAATAT
CAAGGGTTTTCACATAGAAATAGTCACTACAACAAAAACAACTTTTAACGACAGTAAATATTGACATTAATAAAGAATGC
TAAAATTTTTACCGACATTAGTTAAGTATCATTAGAACCAATATCACTAAATACTTTAACGACATATACGAAGAGTGCTA
ATTGATGCTAATGATCATTTTTGACGTAGTAATCGCTGATTACTACTAGTCAAACTAGAAAGAAGTCTATAGTTTAGTTA
TGTAAATTGTTACTACTTAATTTTTGTTATAGTGGTTACACAAATGGTAAATTATTATAGGATTGGATATATCTATAATA
TATATAAAATAATTATAAGTAATTTATATATTGACAAGCTATAATAGATAAATTTTTATAAATTTTATTCGAAAGAAATT
AGACATGATAATTTTTCATCATATCCAGTTCGAACTCTCAAGACTATAATTAGTTATTCTTTTTTTTTTTCAAAAAGTTC
CATAAAATCGAAAATTATTATATTTATATAATATTTCTCGATTTTAATCTGATGATATAAAAAATCTATATATTATCAGG
TTAGTGTTCCATGCAGCAACATGTTAACCTTAGTGACAGTAAGATGTGGGCATTGTGCAAATATGCTTTCTGTTAATATT
GGATCTTTAATTCAAGCTCTACCCCTTCAAGATGTTCAAGTAAGTAAATATATTAATTATTTTTCTCTATTTCATTTTAT
TTACGTATAAGACATATACAATCTTTTACGCACTATAATAAGTATTCATGAATCTTACGTAGGAACTTTTATTAGTGCTC
AAACACGAAATACTTAGTTTTATGAATGTTTGCTTCAGATCGAATATAATCAAATATTGATATATTCAGATAATTTGAAA
ATAATCAATTCATCGCTTAAGCGAGACATTGATCAATTGCTATCCTTTCCTTTTCGATTTGTTCCAGTAAAACAACATGT
AATTTCTACATTTTAAGGATAATTCGAGTTTAAACCTTTCAGTTTAACCCTAATATTTATAATTTTATAATTATATAATA
TTATGACATTTTTAAAATTATAATTTCTTTTAAAAAAAATTTATATACTTGTGTGTAATTCATAATCTCTATGGTCAAAT
GCTGTCTCTCTCTCTCTCTCTCTTTTTTTTTTTTACCTTTTCCTAATTTTGTGGTAAAAAAAATTAAAAAAATATTTTTT
TCCATTACTTTTTTTGTTGGTGGAGGAGAAGAAAGTGTTTTATACTAATTATTACTATGATAATAATAATATATATATTT
TTTCTTTTTATCTGACAGAAGCTGCAAAGGCAACAGTACACAAATGTTGAAAATAATTCTAGTAATTATAAAGCTTATGG
TTCATCATCATCATCCTCTTCAAAGTTCAACAGATATTCTTCCATTGTTTCTCCTCAAATTGAACCTAAAATCCCTTCGA
TTCGTCGTAAGTACTCTCTCTATCTCTCTTAATAAATCGCTACACATTAATTATATATAATCGTTCATAATAAGTAGAAC
GAGCAAATTATAACTTAATAAATAAGACAGTTGACCTACTATAACATATTTGAAATTTAAAGTTATAATATTAGTATATA
AGTTAAATATTTTGTTGAATTGTTGTTTGCAACATGTCCTTTCAAAGTGTAATTAACTTAAAACAAGCTAGGTAAGTGTA
ACCGGCTACCAGGTCAATTTAAATCAAGTTAAGATGTTTAAATATATATTTTTTAAAGTTATATCGATATATCATATATC
TTTAAGTTATATATACGTTTATCGATCGTAGCAGATAATCTGAGTTATTTATAAGACTATAATTTCGATATTATTTGGTT
GATCTAATAATATAAAACAGCATGTACATTGTTGATGTACATAAGTATAGTGACTTAGAATCTTTATCAAGGTGATTCGA
ATAATGAAAATACGATATATAAGATTTGAATTTAAAGTATCAAATAGAGCTAATTTTTACTTTTATGTTCAGATAATTTA
AACTCTTTATATATATAATATGATATTTTATTTAAAAAATAAATAAATGAACATGTGAATCCGTCTCGATTTGTAGTATG
AAAAAGGAGGAGATATAATTGACAATAATATTTGGACTACATGAAGTTTCCTCTTCACTTTTATGACAACTGAAATTGAT
TGTGACATTACATTTGTATCCAACTCATCAATAACATTGTTAATTATTAGGGCCCTTTGGTTGGAGAACAATTTATATAT
TAAAATTAAATTTACACAGTTAATACTATAATATGTTTGGTGTGATAATTTAAGCACATTATTTGGTTATTATTTTTATA
ATTTTATTTAAATTAAAAATATATAAATTGTGAATTATAAAAAATAAAATAATTAATACATGCATTATTAATATCTTCAT
AATTTAAACGACGCACTTTAAATCAATAATCCATGTGGCATAATAGAAAACACTTCTAAATAACAATGAAGCTAGGGTTA
TGAAAAAATTCAATGGTTTTTGAGCAAAATCTTGTATTTATGTAATTATGTTAGTGAATCAACATAACAGGTACATAGAT
AAGTATCGAATACGTTACCTTTTCTAAAACTCAAAATTTATAAATTTAAAATTTTAACTCCGTCTCTTTCATATATCAAA
CTATGCAGCACCAGAGAAAAGACAACGTGTTCCTTCTGCGTACAACCGATTCATCAAGTAAGTTTTTTTTTCTTCCAGTA
GATATTATGATGTTAATTTATTAATTCGCATTTAGAAATTTTAAATTTATGTATTTTTGAGATCAAATGTACTAAGTTCT
ACGTAATTCGAAAATCCGTCCATATTTAGTTACCCCTCTCTTGCCACCGAAAATTTGCAATATATTTATATTTACTGAGA
TCAAAAATATATATTTAAAATACCGATCGCATATTTTTTGCGCTATATTATTATGTTTCGAATGTGTATAGGGAAGAGAT
TCAAAGGATCAAGGCCAGTAATCCTGATATTAGCCATCGTGAAGCTTTTAGCACTGCTGCCAAAAATGTAAGTCCTCTCT
TAATCAAAAATCTCGAGATTACACTGTGAAAATAATAAAAAAAAATATTGTTTTCGTTAGTATACCTAACACAATGAAAA
TGGAAACTAATATGGATACCTAGAAGGAGTTAAGCATGGGAAAAAGCGGGAGAGTCTTTTTAAGTTGATGACTTTTTGAA
TGATCGTGTGTTTAATTTACTTTTTTATGTCTTAAATCAGATTAAATTATGAAAATAAGAAAAAAGAATCTTTAGTAAAA
AGCGTTTTTCTCGTTAGTAGACCTTACACAATGAAAATGAAAACTATGAATACCTACAAGGAGTTAAGCATGGGAAATAG
CGGGAGTGTCTTTTTAAGTTGATGACTTTTTGAACGATTTTGCGTTTAATTTACTTTTTTTTATGTCTTGAATCTTTTAG
GTAAAAATCTTACTTTGCATGTGATATAATACTAATTATATATCGTTTGAACTATAATTCTAGGCTTTCATATTTCAACT
ATATATTATTTCTATAATTTATCTAAATTATTATTTTCTTTGTATTAATATATACTTTTGGTGTTGAATTGTCCAAATGT
TTGTCGATAAACGTGCGTCTATTTTTAACCATTTATTCATCAAAATAATAATTTTAAACGTATTTTTAATCGTTAATTCA
GACAAATAATAAAACAACAAAAGAAATGAAAATAACTTGAACTATATATTATTTCTATAATTTATCTAAATTATTATTTT
CTTTGTATTAATATATACTTTTAGTGTTGAGTTGTCCAAATGTTTGTCGATAAATGTGCGTCTATTTTTGGCCATTTGTT
GATCAAAATAATAATTTTAGACGTATTTTTAATCGTTAATTCAGACAAATAATAAAACAATAAAAGAAATGAAAATAACT
TGAATTATATATTATTTCTATAATTTATCTAAATTATTATTTTCTTTGTATTAATATATACTTTTGATGTTGTAATATAT
ACTTCTGATATTGAATTGTCCAAATGTTTGTTGATAAACATGCGTCTATTTTTGGCCATTTTTATTCATCAAAATAATAA
TTTTAGACGTATTTTTAATCGTTAATTCAGACAAATAATAAAATAATAAAAGAAATGAAAATAACTTGAACTATATATTA
TTTCTATAATTTATCTAAATTAATATTTTCTTTGTATTAAAATATATTTTTGATGTTGAGTTGTCCAAATGTTTGTCGAT
AAACGTGAGTCTACTTTTGGCCATTTATTCATCGAAATAATAATTTTAAACGTATTTTTAATCGTTAATTCAAACAAATA
ATAAAACAATAAAAGAAAAGAAAATTACTTGCACTATACATTATTTCTATAATTTATCTAAATTATTATTTTCTTTGTAT
TAATATATACTTTTGATGTTGAGTTGTTTAAATATTTATCAATAGACGTGCGTTTATTTTTGGCCATTTATTCATGATTT
TAGACGTATTTTTAATCGTTAATTCAGACAAATAACAAAACAATAAAAGAAATGAAAATAACTTGTTGCATGTGGAATTT
TTTGAATGTTCACAAAAGAAAAATTATGGTAGGGACAAACAAGAATGACCACTAAAATAGAAGAAATTAAAAAAGAGAAA
AATATATTTTTCAAGATTTTATCTTTTATTTTAATTTTTTGCTATTTTTGCAGTGGGCACATTTTCCACATATTCACTTT
GGACTCAAGCTGGAGGGCAACAAATAG
Download sequence region |
Get flanking sequences on SL2.50ch11
|
![]() ![]() |
Ontology terms | None | terms associated with this mRNA |
![]() ![]() | spliced cDNA sequence, including UTRs |
>Solyc11g071810.1.1 CRABS CLAW (Fragment) (AHRD V1 **-- Q5EMM7_GOSHI); contains Interpro domain(s) IPR006780 YABBY protein
ATGTCATTCGATATGACTTTTTCTTCTTCACCTTCCTCAGAACGCGTTTGTTACTTGCAATGTAATTTTTGCAACACCAT
TCTTGCGGTTAGTGTTCCATGCAGCAACATGTTAACCTTAGTGACAGTAAGATGTGGGCATTGTGCAAATATGCTTTCTG
TTAATATTGGATCTTTAATTCAAGCTCTACCCCTTCAAGATGTTCAAAAGCTGCAAAGGCAACAGTACACAAATGTTGAA
AATAATTCTAGTAATTATAAAGCTTATGGTTCATCATCATCATCCTCTTCAAAGTTCAACAGATATTCTTCCATTGTTTC
TCCTCAAATTGAACCTAAAATCCCTTCGATTCGTCCACCAGAGAAAAGACAACGTGTTCCTTCTGCGTACAACCGATTCA
TCAAGGAAGAGATTCAAAGGATCAAGGCCAGTAATCCTGATATTAGCCATCGTGAAGCTTTTAGCACTGCTGCCAAAAAT
TGGGCACATTTTCCACATATTCACTTTGGACTCAAGCTGGAGGGCAACAAATAG
ATGTCATTCGATATGACTTTTTCTTCTTCACCTTCCTCAGAACGCGTTTGTTACTTGCAATGTAATTTTTGCAACACCAT
TCTTGCGGTTAGTGTTCCATGCAGCAACATGTTAACCTTAGTGACAGTAAGATGTGGGCATTGTGCAAATATGCTTTCTG
TTAATATTGGATCTTTAATTCAAGCTCTACCCCTTCAAGATGTTCAAAAGCTGCAAAGGCAACAGTACACAAATGTTGAA
AATAATTCTAGTAATTATAAAGCTTATGGTTCATCATCATCATCCTCTTCAAAGTTCAACAGATATTCTTCCATTGTTTC
TCCTCAAATTGAACCTAAAATCCCTTCGATTCGTCCACCAGAGAAAAGACAACGTGTTCCTTCTGCGTACAACCGATTCA
TCAAGGAAGAGATTCAAAGGATCAAGGCCAGTAATCCTGATATTAGCCATCGTGAAGCTTTTAGCACTGCTGCCAAAAAT
TGGGCACATTTTCCACATATTCACTTTGGACTCAAGCTGGAGGGCAACAAATAG
![]() ![]() | translated polypeptide sequence |
>Solyc11g071810.1.1 CRABS CLAW (Fragment) (AHRD V1 **-- Q5EMM7_GOSHI); contains Interpro domain(s) IPR006780 YABBY protein
MSFDMTFSSSPSSERVCYLQCNFCNTILAVSVPCSNMLTLVTVRCGHCANMLSVNIGSLIQALPLQDVQKLQRQQYTNVE
NNSSNYKAYGSSSSSSSKFNRYSSIVSPQIEPKIPSIRPPEKRQRVPSAYNRFIKEEIQRIKASNPDISHREAFSTAAKN
WAHFPHIHFGLKLEGNK*
MSFDMTFSSSPSSERVCYLQCNFCNTILAVSVPCSNMLTLVTVRCGHCANMLSVNIGSLIQALPLQDVQKLQRQQYTNVE
NNSSNYKAYGSSSSSSSKFNRYSSIVSPQIEPKIPSIRPPEKRQRVPSAYNRFIKEEIQRIKASNPDISHREAFSTAAKN
WAHFPHIHFGLKLEGNK*
![]() ![]() |
![]() ![]() | [Associate new unigene] |
Unigene ID:
SGN-U578286 Tomato 200607 -- build 2 -- 10 members [Remove] [Blast]
SGN-U581417 Tomato 200607 -- build 2 -- 2 members [Remove] [Blast]
SGN-U581417 Tomato 200607 -- build 2 -- 2 members [Remove] [Blast]
![]() ![]() | [Associate new genbank sequence] |
AK248039 Solanum lycopersicum cDNA, clone: LEFL2036B07, HTC in fruit.
EU557673 FAS protein [Solanum lycopersicum]
EU557674 FAS protein [Solanum lycopersicum]
EU557676 Solanum lycopersicum nonfunctional mutant FAS protein (fasciated) mRNA, fasciated-1 allele, complete sequence.
EU557677 FAS protein [Solanum lycopersicum]
EU557673 FAS protein [Solanum lycopersicum]
EU557674 FAS protein [Solanum lycopersicum]
EU557676 Solanum lycopersicum nonfunctional mutant FAS protein (fasciated) mRNA, fasciated-1 allele, complete sequence.
EU557677 FAS protein [Solanum lycopersicum]
Other genome matches | None |
![]() ![]() | [Associate publication] [Matching publications] |
Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2004)
Show / hide abstract
Show / hide abstract
Lycopersicon esculentum accessions bearing fasciated (multiloculed) fruit were characterized based on their flower organ and locule number phenotypes. Greenhouse and field evaluations indicate that increases in locule number are associated with increases in the number of other floral organs (e.g., sepals, petals, stamens) in all stocks. F1 complementation, F2 segregation analysis, and genetic mapping indicate that at least four loci account for increases in the number of carpels/locules in these stocks. The most significant of these map to the bottoms of chromosomes 2 and 11 and correspond to the locule number and fasciated loci. All stocks tested were fixed for mutations at the fasciated locus, which maps to the 0.5-cM interval between the markers T302 and cLET24J2A and occurs in at least three allelic forms (wild type and two mutants). One of the fasciated mutant alleles is associated with nonfused carpels and repressed recombination and may be due to a small inversion or deletion. The other two loci controlling locule number correspond to the lcn1.1 and lcn2.2 loci located on chromosomes 1 and 2, respectively.
Barrero, LS. Tanksley, SD.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2004.
109(3).
669-79.
Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato.
Genome / National Research Council Canada = Génome / Conseil national de recherches Canada (2006)
Show / hide abstract
Show / hide abstract
Mutation at the fasciated locus was a key step in the production of extreme fruit size during tomato domestication. To shed light on the nature of these changes, near-isogenic lines were used for a comparative developmental study of fasciated and wild-type tomato plants. The fasciated gene directly affects floral meristem size and is expressed before the earliest stages of flower organogenesis. As a result, mature fruit of fasciated mutants have more carpels (locules) and greater fruit diameter and mass. The discovery that fasciated affects floral meristem size led to a search for candidate genes from Arabidopsis known to be involved in floral meristem development. Putative homologs were identified in a large tomato EST database, verified through phylogenetic analyses, and mapped in tomato; none mapped to the fasciated locus; however, putative homologs of WUS and WIG mapped to the locule number locus on chromosome 2, the second major transition to large tomato fruit, with WUS showing the highest association. In other cases, minor QTLs for floral organ number (lcn2.2) and (stn11.2) co-localized with a CLV1 paralog and with the syntenic region containing the CLV3 gene in Arabidopsis, respectively.
Barrero, L. Cong, B. Wu, F. Tanksley, S.
Genome / National Research Council Canada = Génome / Conseil national de recherches Canada.
2006.
49(8).
991-1006.
Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication.
Nature genetics (2008)
Show / hide abstract
Show / hide abstract
Plant domestication represents an accelerated form of evolution, resulting in exaggerated changes in the tissues and organs of greatest interest to humans (for example, seeds, roots and tubers). One of the most extreme cases has been the evolution of tomato fruit. Cultivated tomato plants produce fruit as much as 1,000 times larger than those of their wild progenitors. Quantitative trait mapping studies have shown that a relatively small number of genes were involved in this dramatic transition, and these genes control two processes: cell cycle and organ number determination. The key gene in the first process has been isolated and corresponds to fw2.2, a negative regulator of cell division. However, until now, nothing was known about the molecular basis of the second process. Here, we show that the second major step in the evolution of extreme fruit size was the result of a regulatory change of a YABBY-like transcription factor (fasciated) that controls carpel number during flower and/or fruit development.
Cong, B. Barrero, LS. Tanksley, SD.
Nature genetics.
2008.
40(6).
800-4.
Distribution of SUN, OVATE, LC, and FAS in the Tomato Germplasm and the Relationship to Fruit Shape Diversity.
Plant physiology (2011)
Show / hide abstract
Show / hide abstract
Phenotypic diversity within cultivated tomato (Solanum lycopersicum) is particularly evident for fruit shape and size. Four genes that control tomato fruit shape have been cloned. SUN and OVATE control elongated shape whereas FASCIATED (FAS) and LOCULE NUMBER (LC) control fruit locule number and flat shape. We investigated the distribution of the fruit shape alleles in the tomato germplasm and evaluated their contribution to morphology in a diverse collection of 368 predominantly tomato and tomato var. cerasiforme accessions. Fruits were visually classified into eight shape categories that were supported by objective measurements obtained from image analysis using the Tomato Analyzer software. The allele distribution of SUN, OVATE, LC, and FAS in all accessions was strongly associated with fruit shape classification. We also genotyped 116 representative accessions with additional 25 markers distributed evenly across the genome. Through a model-based clustering we demonstrated that shape categories, germplasm classes, and the shape genes were nonrandomly distributed among five genetic clusters (P < 0.001), implying that selection for fruit shape genes was critical to subpopulation differentiation within cultivated tomato. Our data suggested that the LC, FAS, and SUN mutations arose in the same ancestral population while the OVATE mutation arose in a separate lineage. Furthermore, LC, OVATE, and FAS mutations may have arisen prior to domestication or early during the selection of cultivated tomato whereas the SUN mutation appeared to be a postdomestication event arising in Europe.
Rodríguez, GR. Muños, S. Anderson, C. Sim, SC. Michel, A. Causse, M. Gardener, BB. Francis, D. van der Knaap, E.
Plant physiology.
2011.
156(1).
275-85.
Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato.
Molecular genetics and genomics : MGG (2013)
Show / hide abstract
Show / hide abstract
Members of the plant-specific gene families IQD/SUN, OFP and YABBY are thought to play important roles in plant growth and development. YABBY family members are involved in lateral organ polarity and growth; OFP members encode transcriptional repressors, whereas the role of IQD/SUN members is less clear. The tomato fruit shape genes SUN, OVATE, and FASCIATED belong to IQD/SUN, OFP and the YABBY gene family, respectively. A gene duplication resulting in high expression of SUN leads to elongated fruit, whereas a premature stop codon in OVATE and a large inversion within FASCIATED control fruit elongation and a flat fruit shape, respectively. In this study, we identified 34 SlSUN, 31 SlOFP and 9 SlYABBY genes in tomato and identified their position on 12 chromosomes. Genome mapping analysis showed that the SlSUN, SlOFP, and SlYABBY genes were enriched on the top and bottom segments of several chromosomes. In particular, on chromosome 10, a cluster of SlOFPs were found to originate from tandem duplication events. We also constructed three phylogenetic trees based on the protein sequences of the IQ67, OVATE and YABBY domains, respectively, from members of these families in Arabidopsis and tomato. The closest putative orthologs of the Arabidopsis and tomato genes were determined by the position on the phylogenetic tree and sequence similarity. Furthermore, expression analysis showed that some family members exhibited tissue-specific expression, whereas others were more ubiquitously expressed. Also, certain family members overlapped with known QTLs controlling fruit shape in Solanaceous plants. Combined, these results may help elucidate the roles of SUN, OFP and YABBY family members in plant growth and development.
Huang, Z. Van Houten, J. Gonzalez, G. Xiao, H. van der Knaap, E.
Molecular genetics and genomics : MGG.
2013.
288(3-4).
111-29.
A cascade of arabinosyltransferases controls shoot meristem size in tomato.
Nature genetics (2015)
Show / hide abstract
Show / hide abstract
Shoot meristems of plants are composed of stem cells that are continuously replenished through a classical feedback circuit involving the homeobox WUSCHEL (WUS) gene and the CLAVATA (CLV) gene signaling pathway. In CLV signaling, the CLV1 receptor complex is bound by CLV3, a secreted peptide modified with sugars. However, the pathway responsible for modifying CLV3 and its relevance for CLV signaling are unknown. Here we show that tomato inflorescence branching mutants with extra flower and fruit organs due to enlarged meristems are defective in arabinosyltransferase genes. The most extreme mutant is disrupted in a hydroxyproline O-arabinosyltransferase and can be rescued with arabinosylated CLV3. Weaker mutants are defective in arabinosyltransferases that extend arabinose chains, indicating that CLV3 must be fully arabinosylated to maintain meristem size. Finally, we show that a mutation in CLV3 increased fruit size during domestication. Our findings uncover a new layer of complexity in the control of plant stem cell proliferation.
Xu, C. Liberatore, KL. MacAlister, CA. Huang, Z. Chu, YH. Jiang, K. Brooks, C. Ogawa-Ohnishi, M. Xiong, G. Pauly, M. Van Eck, J. Matsubayashi, Y. van der Knaap, E. Lippman, ZB.
Nature genetics.
2015.
47(7).
784-92.
![]() ![]() | [Add ontology annotations] |
biological_process
|
plant_anatomy
inferred from expression pattern
inferred from transcript expression PMID:23371549 Anuradha Pujar 2014-10-29 inferred from expression pattern
inferred from transcript expression PMID:23371549 Anuradha Pujar 2014-10-29 inferred from expression pattern
inferred from transcript expression PMID:23371549 Anuradha Pujar 2014-10-29 |
solanaceae_phenotype
|
![]() ![]() |
- Genomic details
Please wait, checking for comments about locus 538
Your Lists
Public Lists
List Contents
List Validation Report: Failed
Elements not found:
Optional: Add Missing Accessions to A List
Mismatched case
Click the Adjust Case button to align the case in the list with what is in the database.
Multiple mismatched case
Items listed here have mulitple case mismatches and must be fixed manually. If accessions need to be merged, contact the database directly.
List elements matching a synonym
Multiple synonym matches
Fuzzy Search Results
Synonym Search Results
Available Seedlots
Your Datasets
Public Datasets
Dataset Contents
Dataset Validation Failed
Elements not found:
Your Calendar
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Having trouble viewing events on the calendar?
Are you associated with the breeding program you are interested in viewing?
Add New Event
Event Info
Attribute | Value |
---|---|
Project Name: | |
Start Date: | |
End Date: | |
Event Type: | |
Event Description: | |
Event Web URL: |
Edit Event
Login
Forgot Username
If you've forgotten your username, enter your email address below. An email will be sent with any account username(s) associated with your email address.
Reset Password
To reset your password, please enter your email address. A link will be sent to that address with a link that will enable you to reset your password.
Create New User
Working
